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Scaling for period doubling sequences with correlated noise 
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Route de Saclay, 91128 Palaiseau Cedex, France 
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Abstract. The scaling behaviour of the period doubling sequences, perturbed by correlated 
noises, is investigated using a renormalisation group. The renormalisation transformation 
is achieved by a path integral formalism which allows a necessary generalisation of the 
random perturbation notion. For a stationary and weakly correlated (in a sense specified 
in this paper) Gaussian random perturbation it is proved that the scaling behaviour depends 
only on the same universal constant K = 6.619 . . . as for uncorrelated perturbations. 

1. Introduction 

The onset of turbulence after period doubling sequences (Feigenbaum's scenario) is 
now well known [l-51. For one-parameter families of maps on an interval such as 
x + 1 - px2, x E [0, 13, p E [0,2], we observe a cycle of period 2', stable for p in the 
interval [ p i ,  P ~ + ~ ] .  For p = p i + l  this cycle becomes unstable through a subharmonic 
bifurcation and a stable cycle of period 2'+' appears (the limit of the sequence 
pn (limn-.epn =pm)  exists). The lengths of the intervals [ p i ,  p i + l ]  scale as 
]pi  - p j + l l / / p j - l  - p i ]  = K1, near p = pa; 6 = 4.669.. . is the universal Feigenbaum 
constant. If this one-parameter family of maps is perturbed by an external noise, only 
a finite number of doubling bifurcations is observable. For a decorrelated random 
perturbation several authors [6,7] bring out a new universal constant: K = 6.619 . . . 
which can be interpreted in the following way: the attractor for p (near p,) perturbed 
by an uncorrelated noise of amplitude E << 1 and the attractor for p ' =  pa+ 8 ( p  - p m )  
perturbed by an uncorrelated noise of amplitude K E  are similar except for a scaling 
factor A = -0.4 ( A  is the scaling factor of the period doubling cascade without noise). 
In particular, for p = pm the attractor when the noise amplitude is E has twice as many 
bands as when the noise amplitude is K E .  

However, if the random perturbation is temporally correlated, the universal con- 
stant, if it exists, can differ from K .  It can even take several values. In particular, if 
the perturbation is not random (it can be seen as a very strongly correlated random 
perturbation) the universal constant, calculated by a renormalisation group technique, 
is 6 = 4.669 . . . and not K .  Moreover the study by Ameodo [8] of a quasiperiodic 
perturbation (which can be seen as a quasiperiodic correlated random perturbation) 
indicates that there is a continuum of universal constants. 

In this paper, we investigate the problem of the Feigenbaum scenario perturbed 
by a correlated noise, using the renormalisation group technique. To define correctly 
the renormalisation transformation, it is no longer possible to consider the external 
random perturbations to be of the form & + l ( ~ n )  with {&, n 2 1) a process of random 
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maps. Fortunately the path integral formalism used by Shraiman et a1 [7] and 
Feigenbaum et a1 [9] allows us to generalise the notion of perturbation. 

In § 2 we determine the renormalisation transformation for a large class of correlated 
Gaussian random perturbations; this transformation is a map T = (T, TnCf,) from a 
space F x  B in itself, with F the space of maps on the interval [-I, 11 and B a space 
associated with the correlation functions of the perturbation. For a stationary and 
weakly correlated Gaussian process which will be exactly defined in 0 3, we prove the 
uniqueness of the universal constant K = 6.619.. . . So the scaling law behaviour is 
identical for an uncorrelated or for a weakly correlated random perturbation. 

2. The renormalisation transformation 

2.1. Preliminaries 

First let us consider the simple case where the randomly perturbed one-parameter 
dynamical system is defined by the iterative equation: 

Xn+, = F p , n + l ( X n )  ( 1 )  

Fp,n(X) + E S n ( X )  (2) 

with {Fp, , ,  n 2 1) a process of random maps defined by 

with p+fp a one-parameter family of maps on the interval (setting out a period 
doubling sequence), { 6, , n 3 1) a process of Gaussian random maps on R and E a fixed 
parameter ( E  << 1) which determines the noise amplitude. Without loss of generality, 
we suppose that E (  6, ( . )) = O( E ( . ) is the expectation value). 

The renormalisation transformation T can be achieved, as in the deterministic 
problem ( E  = 0), by iterating the map Fp,, twice with a change of scale ( A  = -0.4). 
T is a map on the space of the random processes (2) and is defined by (the subscripts 
p are dropped) 

( T F ) ,  = A - ’  0 F,,,, 0 F2, 0 A. 

For an uncorrelated process (E(S,(X).  (,( Y ) )  = 0 if n # p )  and for sufficiently small 
E, the renormalised process of random maps {( Tf)., n 2 1) is Gaussian if the terms of 
order E’ are neglected; we have (to within O(E’)): 

(3) 

Thus, to within O( E’), this process has the same statistical properties as the Gaussian 

( T F ) ,  = A - ’ o f o f o A  + E A - ~ O [ & ~ + ~ O ~ O A  + C f ‘ o f o A ) ( [ 2 ,  .A) ] .  

process { G,, n 2 1) defined by 

Gn = A 0 f 0 f 0 A + E A  0 6, 
where {l,,, n 2 1) is an uncorrelated Gaussian process of random maps such as 

E ( l n ( X ) )  = o  
E ( l ; ( X ) )  = E([52,+1 o f o  A(x)+(f”f0 A)([2n  0 h)(X)]’) 

for all X belonging to the interval. 
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More generally, for any random process {t,,, n 3 1) we look for a random process 
{&,, n 3 I} with the same distribution law as the process o f 0  A +(f'o f 0 A )  
x (&,, 0 A ) ,  n 2 1) (i.e. the moments of these two processes are identical). 

There are two kinds of scaling laws for the dynamical system (1). One is the scaling 
on the family p +fp (the deterministic part) and the other one is the scaling of the 
moments of the random perturbation. From (3) we can deduce the renormalisation 
transformation 7 = ( T ,  Tn(,)): T acts on the deterministic part f (Tf = A - '  0 f 0 f 0 A )  
and Tncn (which depends on the map f on which T acts) acts on the moments of the 
perturbation. For the uncorrelated equidistributed Gaussian case we have (to within 
o (&~)) :  

(Tn( f )R) (X)  = A - 2 { R ( f ( A ~ ) )  + [f ' ( f ( A x ) ) 1 2 R ( A x ) )  
with R ( x )  = &'E(&(x) .  & ( x ) )  for all i E N * .  

2.2. Generalisation of the random perturbation 

It is conceptually more satisfactory (and necessary for the correlated noises as we shall 
see) to construct the renormalisation transformation by using a path integral statistical 
method [7,9-111; a great advantage of this approach is to allow an easy generalisation 
of the random perturbation. 

To use this technique, for the dynamical system characterised by the deterministic 
map f, we need to know the conditional probability density (or transition probability 
density): P ( X ,  = x,lx,i E [ 1, n - I], xo,  f). This probability density is induced by the 
distribution law of the random process { Y,,, n z  l}, where by definition Y,,E 
X,,  - f ( X , , - ' ) .  If the dynamical system is defined by an explicit equation like ( I ) ,  the 
distribution law of { Y,,, n 2 l} is determined by the law of the process of the random 
maps &, but it can also be given directly without specifying explicitly any process of 
this kind. Therefore it is not necessary to give an equation like ( I ) ,  but to know the 
distribution law of the Y,, is sufficient. 

We assume in the following sections that { Y,,, n 2 I}  is a Gaussian random process 
with E (  Y,)  = 0 for all n 3 1; in this case we only need the data of the cumulants 
R ,  = E (  Y,Y,) which can be functions of the X,,. From causality, P ( X ,  = x,,/x,iE 
[ 1, n - I], x,, ,f)  depends only on the X ,  with p s n. Subsequently we shall use a slightly 
more restrictive assumption: the covariance matrix coefficients R ,  will depend only 
on Xt-l and X J - ' ,  R,, = R , ( X , - ,  , X , - , ) ,  with the necessary condition: 

R , ( X l - l  9 x)-l) = ' J t ( 5 - 1  9 (4) 
The transition probability density is 

P (  X,, = x, I x,i E [ 1, n - 1 3, xo f )  

Conversely, if the covariance matrix R = [ R , ( X , - ,  , X , - , ) ]  of the Gaussian process 
{ Y,,, n 2 1) is positive definite for all values of the X ,  it is possible to write the random 
perturbation explicitly in the same way as in (1): there is a lower triangular matrix 
A = [ a , ]  such as R = A ' A  ( 'A is the transposed A matrix) and with a,J= 
a , (xo ,  XI,  . . . , X,-l, Xt-l). Therefore the dynamical system can be described by the 
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equations 

where {A,,, n 2 l }  is an uncorrelated equidistributed Gaussian process with E(A, , )  = 0 
and E ( A n * A P )  = 

However, if the covariance matrix R is degenerate we can no longer describe the 
randomly perturbed dynamical system by explicit equations such as (6). However, the 
dynamics of the system is always well defined by the transition probability density. 

2.3. The renormalisation transformation 

In what follows the assumptions about the noise are those of the previous subsection; 
in addition, the covariance matrix R is supposed to be of order E’ with E<< 1 (we are 
only dealing with small random perturbations). The renormalisation transformation 
7 = ( T ,  T,(,-)) is obtained by decimation [7 ,9] .  Let us define the characteristic function 
P(klxo, f) of the probability density P(X, =x,,Ixo, f) :  

P,(klxo,f) = dx, P(X, = X n l X o , f )  exp(-ikx,) (7)  I 
with 

P ( X ,  =x,Ix0,f)= n dx,P(X,=x,(x, iE[l ,  n - l ] ,xo , f ) .  I ,= l , , - l  

We integrate first on the k2,-, and then on the x21-l to eliminate them in the formal 
expression of P,(klxo,f) obtained from (6) and (7 ) .  After a rescaling with the 
factor A - -0.4 (in order to achieve the deterministic doubling transformation 
Tf = A -’ 0 f 0 f 0 A ) and using a saddle-node approximation (IR, I - E’ << 1) we achieved 
the renormalised characteristic function Pn12( A -’k)xb, Tf): 

the formal expression of which is written in terms of the rescaled variables x: = A-’x2, 
and k:=Ak2,, the renormalised function Tf and a renormalised matrix T,,/,R. The 
relation (8) points out the self-similarity of the dynamical system. 

The renormalised covariance matrix T,,,-)R (which depends on the map f )  is, to 
within O ( E ~ ) :  

Pn,2(A-’k’lxb, Tf) = P,(klxo,f) (8) 

(TnmR)v(xr-l 9 + I )  

= A-2{Rz,.2,(f(hX,-i),f(hX,-i)) +. . 
+ R~~-IJ,-I(AX~-I 9 Ax,-i)f’(f(Axl-i))f’(f(hx,-i)) +. . 
+ R21.2,-l(f(AXI-I), Ax,-llf’(f(Ax,-l))+’ * ‘ 

+ R2, - 1.2, (Ax, - I 9 f( Ax, - 1 ) If’(f( Ax, - 1 ) 11 (9) 

It is important to note that the exact transformation is not known. However, if 
the fixed point of T, the expression (9) is in fact the exact tangent map 

(where we write x, instead of x:). 

f = a, with 
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of the exact transformation at the fixed point (0,O) of the transformation T = (T, T,(,)), 
where 0 is the null covariance matrix (i.e. there is no perturbation). The knowledge 
of this tangent map is sufficient to know the scaling laws due to a small random 
perturbation. 

It can be checked that the space of covariance matrices with the property (4) is 
stable by Tn(,): 

if R is a positive matrix, so is T,,,,)R; 

At this point, let us notice that if the dynamical system is defined by an equation 

If we assumed the random process { Y,,, n 3 1) to be a stationary process: 

if Rij(Xi-1, X j - 1 )  = Rji(xj-I 1 x i - ] )  SO (Tn(f)R)v(xij(xi-l ,  xj-1) = (Tn(,)R)ji(xj-I 9 X i - 1 ) .  

like ( l ) ,  it cannot be so for the renormalised dynamical system. 

R-n(x, Y )  = Rfl(Y, x )  

the expression of the renormalisation transformation Tn(,) is deduced from (9). We 
obtain 

Now we need to define more precisely the space on which T = ( T ,  T,,(,-,) acts. Let 
F be the space of the maps f on the interval [-1,1] and B(R) the space of maps from 
R, an open neighbourhood in C2 of the set [-1, l]x[-l ,1],  into 1"= 
{ { x , , } , , ~ , - ~ , + ~ ~ x ~  E @, supIx,I <CO} the space of complex numbers bounded sequences, 
so that 

bn(x, Y )  = b-n(Y, x )  for n # O  b E B(R) 

bob,  Y 1 = b o b )  (x ,  Y )  E R. 

The transformation T = (T ,  Tncn) is a map on the space F x B ( f l ) .  T has the trivial 
fixed point (@, 0) where 0 is the null map of B(R) and 0 the known fixed point of T. 
The tangent map of T at (@,O) is D T ( @ , ~ )  = (LIT(*,, DTn(*)(*,o) T,,(*)). In the third 
section we will consider some restriction of T on subspaces F x B'(R) of F x B(R) 
with B'(R) some subspaces of B(R). 

3. Spectrum of the tangent map DT,,,, = T,(@) 

The critical exponents due to the Gaussian stationary random perturbation, charac- 
terised by the covariance functions R,,(x, y )  (4'), are determined by the eigenvalues of 
DT,,(@) = T,,(@) (defined by (10)) of modulus larger than or equal to 1. This spectrum 
depends on the space on which T,,(*) acts; in other words, the critical exponents may 
not be the same if the perturbation is a weakly or a strongly correlated noise. 
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In what follows we investigate a category of weakly correlated random perturba- 
tions. For this purpose we introduce some notation. 

Let He be the subspace of lm(Z) defined by 

H ~ = { h = { h n } n E , - m , + c c [ ;  h , , ~ C , l h , , l < c ~ V n ~ Z  and ,lim nl-m lh,lexp(Olnl)=O) 

with 0 some positive real number. Equipped with the norm 

IIhlIe =sup {Ihnl exp(elnl)} 
n c z  

He is a Banach space. 
Let B(R) c B(R) be the space of analytical functions from the open set R into He: 

B ( 0 )  = {b: R c  C2+ H,, b,(x, y )  = b-,(x, y) and b,(x, y) = b,(x)}. 

Equipped with the norm IIbll=sup,llb(x,y)11e, B(R) is a Banach space. We will 
consider the space BA= B ( O ( 6 ) )  where 

D ( A ) = { Z E @ , I Z - ~ ~ ~ < A  for someyoE[- l , l ]x[ - l ,  l]}. 

Let us note that if the stationary Gaussian random perturbation does not depend 
on the values x,, then we can define the spectral density p ( z ) = Z n e z R n z n  where 
z = e x p ( i 2 d ) .  The choice of the space BA imposes the analyticity of p on a ring 
centred on the circle ( z I  = 1, its width being smaller than 8. 

Theorem 1 .  For sufficiently small A, the restriction of T,,,) to BA, denoted by T,,(,), 
is a compact operator from BA into itself. 

Boo$ Let Tq = T,,,,) 0 Pq where Pq is a projector on BA: 

(1) For A sufficiently small the action of T, enlarges the analyticity domain (see [ 5 ] ) .  
(2) If V is a bounded set of BA, so is TqV for the compact convergence topology. 
(3) The compactness of Tq is a consequence of Montel's theorem. 
(4) Tn(+) is the limit of the compact operators Tq ( T,,(,) = limq-a Tq for the topology 

defined by the norm /I Tq 11 = sup/Jb/lslII Tqb I/), therefore Tn(@) is a compact operator. 

Therefore the spectral values of Tnc+) of modulus larger than or equal to U, U > 0, are 
eigenvalues and in finite number; the eigenspaces are finite dimensional. These eigen- 
vectors and eigenvalues will be given by theorem 2; but first the following proposition 
is needed to give an important characteristic of the eigenvectors. 

Proposition. Let R E BA be an eigenvector of Tn(,) with the eigenvalue K ,  IKI 3 U, with 
O < ~ < l , t h e n R , = O i f n # - l , O ,  1. 

Proofi If R E BA then V(x, y)  E D(A), limlnl-.m(Rn(x, y) (  exp(0(n() =O. So V u  > 0 and 
V ( X , ~ ) E D ( A ) ~ N E N  such that for all n , ] n l >  N, IR,(x,y)l< vexp(-O(n]). 

On the other hand, if R is an eigenvector of TnC4), with the eigenvalue K :  

lK1lRn(x, y)I= l ( ~ n [ @ ) R ) n ( x ,  Y)I 
= A-21R2n(@(A~, @(Ay))+R2,,(Ax, Ay)@'(@(Ax))@'(@(Ay))+. . . 

+ R2 + I (@( Ax 1, AY I@'(@'( Ay ) ) + RZn - 1  (Ax, @ ( A Y  ) )a'( @( AX) I. 
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Using the definition of the limit, for all n such that 2(n( - 1 > N (i.e. In\> ( N +  1 ) / 2 ) :  

IKI IR,(x, y)I s v{a  exp(-812nl)+P[exp(-O12n + 11) +exp(-812n - ll)]}. 

So ~ R , , ( x , y ) ~ s  vu exp(-2Oln() with a=[a+p(exp(-8)+exp(8) ) ] /a  and a , p ~ R  the 
upper bounds of the factors of R2, , ( .  , .), & “ + I ( .  , .), & , , - I ( . ,  .). 

Iterating p times T,,(*) on R we obtain 

V(X, Y )  E D(A), V v > O  3 N  

IR,,(x, Y) IS yap exp(-2p4nl). 

so that for In l>[ l+(N- l ) /Zp]  then 

In the limit p+00 we obtain 

V ( x ,  Y E W A . )  and Vn, In1 > 1 then Rn(x, y )  = 0. 

The eigenvalues of T,,(o) of modulus larger than or equal to 1 and the corresponding 
eigenspaces are as follows. 

Theorem 2. (a) The only eigenvalues of the operator TnCo, acting on B,, of modulus 
larger than or equal to 1, are K’ = 43.811 . . . , A-’, A-’, 1 and (b) the corresponding 
eigenspaces are, in the space B A ,  as follows. 

(i) For the eigenvalue K’ =43.811 . . . the subspace spanned by the vector R E BA 
defined by R,  = 0 for all n except R, which is a solution of the eigenvalue equation 
corresponding to the uncorrelated problem: K ’ R ~ ( X )  = A-2[  R o ( @ ( A x ) )  + 
R 0 ( A x ) [ @ ’ ( @ ( A x ) ) ] ’ ] (  K’ is the greatest eigenvalue of the uncorrelated problem [ 6 , 7 ] ) .  

(ii) For the eigenvalues A ‘-* ( t  = 0,1,2)  the finite-dimensional subspaces spanned 
for each t by the vectors R(‘)E B defined by 

R:)=  0 if n # - l , O ,  1 

R ~ ’ ( x ) =  - u @ ‘ ( x ) + ( ~  - ~ A ) @ ” ( x ) x ’  

Ri‘) (x ,  y )  = 1 A & ’ @ ’ ( X ) @ ‘ - ~ ( ~ )  

R?i(x,  y )  = R\”(y, x )  

with A, E @, A = XpE[- l , , lAp ,  a E C 

ProoJ From the proposition we deduce that the only non-zero components of an 
eigenvector of TnCo), R E BA, are R-,  , R,,, R ,  which are solutions of the following 
eigenvalue equations: 

P E r - l , ‘ ]  

K R l ( x ,  y )  = A-’R,(Ax, @ ( A Y ) ) @ ’ ( @ ( A x ) )  

K R o ( x )  = A-’{R0(@(Ax))+ R , ( A x ) [ @ ’ ( Q ( A x ) ) ] ’ + .  . . 
+2Rl(@(Ax), A x ) @ ’ ( @ ( A x ) ) }  

with (x, y )  E D(A). 
(a) Solutions of equation (1 1). 
An obvious solution is R I  = 0. 
Otherwise, if x # 0 (so @ ’ ( x )  # 0): 

( l l ) e K @ ’ ( A x ) R , ( x ,  y )  = h-’R,(Ax,  @ ( A y ) ) @ ‘ ( x )  

because @’(x) = @ ’ ( @ ( A x ) ) @ ’ ( x ) .  



3216 D Fie1 

We note that the function R,(x,y)/@'(x) is homogeneous in x; therefore, since 
R,(x, y )  is an analytical function: 

Ri(x, Y )  = U ( Y  )x'@'(x) 

with p 3 -1, and U some analytical function. We recall that @(x) = 'U(x') and 'U is 
such that W ( r )  f O  for t E[O, 13. Inserting this result in ( l l ) ,  u(y) must verify 

K u ( y )  = Ap-'u(@(hy)) (13) 

whose solutions are 

u(y) = @."(Y)  Vq 2 0 and K = A p + q - 2 .  

Therefore the solutions of the eigenvalue equation ( 1 1 )  are 

R\"(x, y )  = A + ' @ ' ( X ) @ ' - ~ ( ~ )  
pS[ - l , ' l  

with A P € C  and K = A ' - 2  where t = p + q a - l .  
(b) Solutions of the equation (12) compatible with (14). 
If R I  = 0 then R o ( x )  is a solution of the eigenvalue equation: 

K R , ( x )  = A-2{Ro(@(A~)) + RO(Ax)[@'(@(Ax))]'}. ( 1 5 )  

( (15 )  is the eigenvalue equation of the uncorrelated problem.) The solutions of (15)  
are the known eigenvector corresponding to the eigenvalue K = K' = 43.81 1 . . . and 
the eigenvectors R, = S") t = 0, 1,  2 corresponding to the eigenvalues K = A'-'; S( ' )  is 
given by 

S'"(x) = -a( ' ) (@(x))+ (@'(X))'c7(*)(X) 

where a'" is an analytical function on D ( A )  satisfying 

 AX) = A ' ~ ( " ( x )  t = 0 , 1 , 2  

then 

S'"(X) = -a@'(x)+u[@'(x)]2x' U € @ .  

If R I  is given by (14) then the solutions R,(t) of (12) satisfy 

A'Rt'(x) ={Rg)(@(hx))  + Rb"(Ax)[@'(@(Ax))]'+. . .+2A@(hx)@'(@(Ax))} (16) 

with A = Zpc[-,,,lAp. 

solution of (15 )  with K = A'. Therefore the solutions of equation (16) are 
Let R$' and @,') be two solutions of (16); then the difference ( R g ) - Q t ) )  is a 

R;'(X) = S'"(X) - ~A(@'(x)) 'x'  

where -2A[@'(x)]'x' is a particular solution of equation (16). 

Note about the proof of theorem 2. It is necessary to know the eigenvalues of the 
problem without correlation; the largest eigenvalue, K' = 43.811 . . . , is numerically 
computed (see [6,7]); it can also be numerically checked, by a polynomial approxima- 
tion, that the only eigenvalues larger than 1 are K *  and A'-'( r = 0, 1,2) which eigenvec- 
tors are the S") given in the proof. 

Only the covariance matrices are significant for our problem: we are only interested 
in the cone of the positive matrices of the matrix space; so it is possible to eliminate 
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suppose that R is a positive eigenvector corresponding to A-’;  T,,(@,R must be positive 
(see 0 2.3) but it must also be negative since T,,(,)R = A-’R, so there is a contradiction. 
On the other hand, we cannot eliminate all the other eigenvectors corresponding to 

and 1 with similar arguments. 

4. Conclusion 

In this survey we have determined the renormalisation group corresponding to a period 
doubling sequence perturbed by a Gaussian temporally correlated noise; for this 
purpose we have extended the notion of random perturbation: the perturbation is 
given by the distribution law of the random variables Y, = X,, -f(Xn-l) and not by 
explicit random maps ( x ) .  For stationary Gaussian random processes (a reasonable 
assumption) and for sufficiently weak correlations, specified by the space B A ,  the 
scaling behaviour depends generically on the eigenvalue of TnC4) of largest modulus, 
K’ ,  i.e. on K = 6.619 . . . , since T,,(@) has a discrete spectrum; it is the same as without 
correlation. 

On the other hand, with less restrictive correlation assumptions, we can no longer 
have the same conclusion; if we consider the restriction of the tangent operator T’(4) 
on a larger or another subspace of B ( 0 )  than BA (but stable by the action of T,,(@)); 
this new operator can fail to be compact; for instance, the spectrum can be a continuum 
and the spectral subspaces be infinite dimensional: then even if ( K ~ ( ~ ( K ( ,  where the 
K are spectral values of the restriction of T,,(@), the scaling behaviour is not dominated 
by K for a large class of perturbations (for example, see quasiperiodic correlations 
[8]). Finally we have to notice that for very strong correlations (R , , (x ,  y )  = R ( x ,  y )  
does not depend on n ) ,  R ( x , y ) = @ ( x ) @ ( y )  is an eigenvector of T,,(@) with the 
eigenvalue 8’ (where @ is the fixed point of the deterministic renormalisation trans- 
formation T and S = 4.669. . . is the Feigenbaum universal constant): we find the 
deterministic scaling law again. 
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